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We study nonlinear, two-dimensional convection in a mushy layer during solidification
of a binary mixture. We consider a particular limit in which the onset of oscillatory
convection just precedes the onset of steady overturning convection, at a prescribed
aspect ratio of convection patterns. This asymptotic limit allows us to determine
nonlinear solutions analytically. The results provide a complete description of the
stability of and transitions between steady and oscillatory convection as functions of
the Rayleigh number and the compositional ratio. Of particular focus are the effects
of the basic-state asymmetries and non-uniformity in the permeability of the mushy
layer, which give rise to abrupt (hysteretic) transitions in the system. We find that the
transition between travelling and standing waves, as well as that between standing
waves and steady convection, can be hysteretic. The relevance of our theoretical
predictions to recent experiments on directionally solidifying mushy layers is also
discussed.

1. Introduction
Many modern industrial processes require the production of high quality materials,

many of which are produced by the directional solidification of multi-component
alloys. During the solidification of an alloy, a mushy layer often forms, which is a
region of partially solidified melt with a complex dendritic structure. Comprehensive
reviews of previous theoretical and experimental developments on binary alloy
solidification in mushy layers can be found in Worster (1997, 2000) and Davis
(2001). Below, we review briefly the work relevant to the present study.

In the presence of gravity, unstable density gradients can form as a result of
rejection of a lighter component of the binary mixture upon solidification, driving
compositional convection in a mushy layer. The convective transport of heat and
solute can modify the solid structure of the mushy layer, which, in turn, alters the
fluid flow. A striking example of this mechanism is the formation of chimneys –
localized channels free of solid through which buoyant fluid emanates. Chimneys are
responsible for undesirable structural properties of the resultant solidified product
(e.g. Copley et al. 1970).

A number of linear-stability analyses (Worster 1992; Emms & Fowler 1994;
Anderson & Worster 1996), weakly nonlinear analyses (Amberg & Homsy 1993;
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Anderson & Worster 1995; Chung & Chen 2000; Riahi 2002, 2004; Guba & Worster
2006; Roper, Davis & Voorhees 2008) and nonlinear computations (Schulze & Worster
1998, 1999; Chung & Worster 2002) of convection in mushy layers have been carried
out. Among these, the linear-stability analysis of Anderson & Worster (1996) and
the weakly nonlinear analyses of Anderson & Worster (1995) and Guba & Worster
(2006) are closely related to the present study.

Using a simple model introduced by Amberg & Homsy (1993), Anderson &
Worster (1995) performed a weakly nonlinear-stability analysis of steady convection
in a mushy layer and revealed the possibility of an oscillatory (Hopf) bifurcation.
Subsequently, Anderson & Worster (1996) examined the linear stability in greater
detail and indeed identified an oscillatory mode of instability. They associated this
oscillatory mode with a phase lag between the background macroscopic solidification
and the local dissolution caused by the fluid flow.

The nonlinear development of the oscillatory mode, identified by Anderson &
Worster (1995, 1996), was considered by Guba & Worster (2006). They performed a
weakly nonlinear stability analysis to resolve which of travelling or standing waves
with a two-dimensional roll planform would occur near the onset of convection.
They found that either wave motion could be supercritically stable, depending on
the sensitivity of permeability of the mushy layer to variations in the local solid
fraction. Additionally, the oscillatory solution that is stable was found to have the
larger Nusselt number, and is therefore more efficient at transporting solute in the
system. Building on the linear-stability results of Anderson & Worster (1996), they
also examined the structure of the nonlinear oscillatory solutions and determined
their signatures left behind in the resulting eutectic solid. Their analysis was focused
on parameter regimes in which the oscillatory instability did not interact with the
steady mode of convection. It is the nature of this nonlinear interaction which we
shall elucidate here.

The possibility of oscillatory convection in mushy layers seems to have strong
support in recent laboratory experiments. Solomon & Hartley (1998) performed
experiments on an ammonium chloride solution in Hele-Shaw cells, cooling and
solidifying the solution from a fixed base. A roughly periodic pattern of chimney
convection was observed, in which the lateral locations of the chimneys remained fixed
while the strength of plume convection rising from neighbouring chimneys oscillated
in time out of phase with each other. This periodic behaviour is characteristic of
standing-wave oscillations with flow reversals and could appear (Guba & Worster
2006) as a supercritical primary Hopf bifurcation.

Peppin, Huppert & Worster (2008) conducted laboratory experiments on aqueous
solutions of ammonium chloride in a Hele-Shaw cell, in which the solutions were
translated at prescribed rates through a fixed temperature gradient. By varying the
experimental operating conditions, they determined a regime diagram that quantified
different steady-state convection regimes as a function of the pulling speed and
initial composition of the solution. Near to the boundary marking the chimney to
no-chimney transition, a ‘breathing mode’ of chimney convection was observed, in
which chimneys all periodically appeared and disappeared in phase. Such periodic
behaviour might be caused by nonlinear oscillations about a steady state which do
not result in a reversal of the main steady flow. Here, we include the physical effects
associated with the higher-order permeability variations and interactions between the
temperature and the solid structure of the mushy layer, and by doing so identify a
way by which such stable vacillations can be found.
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Figure 1. A schematic diagram of the system under consideration, showing the solid, mush
and liquid. The system is continuously being solidified at speed V in the vertical direction.
The mushy layer is assumed to have constant thickness d . The bottom boundary z = 0 of
the mushy layer is kept at the eutectic temperature TE , and the top boundary z = d at the
liquidus temperature TL(C0). The top and bottom boundaries of the mushy layer are taken to
be rigid, impermeable and isothermal. Mixture with concentration C0 is fed into the mushy
layer through the mush–liquid interface.

In addition to the nonlinear-stability properties of steady and oscillatory convecting
states alone (Anderson & Worster 1995; Guba & Worster 2006), one is naturally
interested in the nature of the possible transitions between the steady and
oscillatory solutions that occur as the system control parameters are varied. In
the present paper, a problem of this sort is analysed by studying the mushy-
layer system in the vicinity of a particular multiple bifurcation associated with the
coalescence of the steady-state and oscillatory bifurcations. The analysis provides
a complete description of the nonlinear interactions between the steady and
oscillatory states and predicts hysteretic transitions in the system. Some of the
predictions are interpreted in terms of experimentally relevant dimensional control
parameters.

The paper is organized as follows. In § 2, we formulate the problem. In § 3, we
perform a two-time scale asymptotic analysis to derive an amplitude equation that
describes the nonlinear coupling between the steady and oscillatory states. In § 4,
we analyse the amplitude equation and make predictions of nonlinear stability. We
identify conditions under which the mushy-layer system exhibits hysteretic transitions
between convecting states. Finally, in § 5 we give some conclusions.

2. Formulation
Formulation of the problem follows that given in Anderson & Worster (1995), and

later used by Guba & Worster (2006). For completeness, the main aspects of the
formulation are also described here.

The physical system under consideration consists of a horizontal mushy layer lying
between a completely solid region below and a completely liquid region above, as
illustrated in figure 1. The system is cooled uniformly from below such that the solid–
mush and mush–liquid interfaces advance upwards with a constant solidification
speed V . We adopt a simplification that the mushy layer is dynamically isolated
from the rest of the system (Amberg & Homsy 1993) by assuming the top and
bottom boundaries of the mushy layer to be non-deformable, impermeable to fluid
flow and isothermal. The system is studied in a frame of reference moving upwards
with velocity V relative to the solid formed at the bottom of the mushy layer and
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the solid dendrites within the mushy layer, allowing the non-convecting basic state
to be steady. In this frame of reference, the bottom boundary of the mushy layer
z = 0 is kept at the eutectic temperature T = TE , while the top boundary z = d is
kept at the liquidus temperature TL(C0) and is a surface through which the mixture
of composition C0 is supplied.

The temperature T and the composition C of the liquid in the mushy layer are
required to satisfy a linear liquidus relationship

T = TL(C) ≡ TL(C0) + Γ (C − C0), (2.1)

where Γ is a constant. The liquid is assumed to be Newtonian with a linearized
equation of state

ρl = ρ0[1 + β(C − C0)], (2.2)

where ρ0 is a reference density, β = β∗ − α∗Γ , and α∗ and β∗ are the constant
expansion coefficients for heat and solute, respectively.

We begin with the dimensionless equations describing conservation of heat, solute,
momentum and mass in the reference frame translating with the eutectic front (see
e.g. Worster 1992) given by(

∂

∂t
− ∂

∂z

)
(θ − Sφ) + u · ∇θ = ∇2θ, (2.3a)(

∂

∂t
− ∂

∂z

)
[(1 − φ)θ + C φ] + u · ∇θ = 0, (2.3b)

K(φ)u = −∇p − Raθ ẑ, (2.3c)

∇ · u = 0, (2.3d )

where the dependent variables are the temperature (or equivalently composition) θ ,
the local solid fraction φ, the Darcy fluid velocity u and the pressure p. The governing
equations have been made dimensionless by scaling the temperature difference T −
TL(C0) with 	T = Γ 	C = TL(C0) − TE , where 	C = C0 − CE and CE is the eutectic
composition; velocity with V ; length and time with the thermal-diffusion length scale
and time scale κ/V and κ/V 2; and pressure with κμ/Π(0), where μ is the dynamic
viscosity of the liquid and Π(0) is the reference permeability of the layer. The function
K(φ) defined by K(φ) = Π(0)/Π(φ) accounts for the variations of permeability Π

with the local solid fraction φ; see (2.12).
The mushy-layer system is controlled by the three dimensionless parameters S, C

and Ra defined by

S =
L

cl	T
, C =

CS − C0

C0 − CE

, Ra =
ρ0β	CgΠ(0)

μV
. (2.4a–c)

These quantities are respectively the Stefan number, the compositional ratio and
the Rayleigh number. Here, L is the latent heat of solidification, cl is the specific
heat, CS is the composition of solid forming the dendrites and g is the gravitational
acceleration.

We adopt the simple boundary conditions

θ = −1, w = 0 on z = 0, (2.5a,b)

θ = 0, w = 0, φ = 0 on z = δ, (2.5c–e)
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where δ is a measure of the dimensionless height of the mushy layer defined as
δ = d/(κ/V ) and w is the z-component of u. For a detailed discussion of these
conditions, the reader is referred to Anderson & Worster (1995).

We proceed by reducing the model asymptotically. First, following Amberg &
Homsy (1993), we study a limit in which the thickness of the mushy layer is much
less than the diffusion length scale by letting δ � 1. Secondly, we assume that the
compositional ratio is large by writing

C = C̄ /δ, with C̄ = O(1) as δ → 0, (2.6)

which corresponds to the near-eutectic approximation introduced by Fowler (1985).
Thirdly, we consider the limit in which the Stefan number is large (Emms & Fowler
1994) by taking

S = S̄/δ, with S̄ = O(1) as δ → 0, (2.7)

which corresponds to the situation in which the latent heat liberated during the local
phase change is much larger than the heat associated with the typical variations
of temperature across the mushy layer. Note that this particular scaling allows the
destabilization of the system to an oscillatory mode of convection (Anderson &
Worster 1995; Guba & Worster 2006).

An analysis of the balances in (2.3) for these asymptotic limits then indicates the
following rescalings of the problem:

(x, z) = δ(x̄, z̄), t = δ2 t̄ , R2 = δRa, (2.8a–c)

θ = θB(z̄) + εθ̂ (x̄, z̄, t̄), (2.8d )

φ = φB(z̄) + εφ̂(x̄, z̄, t̄), (2.8e)

u = 0 + ε
R

δ
û(x̄, z̄, t̄), (2.8f )

p = RpB(z̄) + εRp̂(x̄, z̄, t̄), (2.8g)

where the subscript B denotes a non-convecting basic state, in the moving frame,
which is perturbed by the small convective disturbances measured by a perturbation
amplitude ε. Note that the basic state is steady and horizontally uniform, while the
two-dimensional disturbances can vary in the vertical and horizontal directions and
in time.

The approximate basic-state solutions to the problem, resulting from (2.3) and (2.5),
under the particular asymptotic limits given by (2.6) and (2.7) can be obtained as
series expansions in powers of δ, yielding

θB = −(1 − z̄) + δ
Ω

2
z̄(1 − z̄) + O(δ2), (2.9a)

φB ≡ δφ̄B = δ
1

C̄
(1 − z̄) − δ2

(
1

C̄ 2
(1 − z̄)2 +

Ω

2C̄
z̄(1 − z̄)

)
+ O(δ3), (2.9b)

where the O(1) parameter Ω = 1+ S̄/C̄ represents a measure of the coupling between
the thermal and solid-fraction fields. Note that φB is vanishing and θB is linear in the
limit δ → 0, the results directly related to the onset of convection in a non-reacting
porous layer as studied by Palm, Weber & Kvernvold (1972). It is the higher-order
terms in δ that are associated with effects pertinent to the mushy layer.
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The equations governing convective, in general nonlinear, perturbations are(
∂

∂t̄
− δ

∂

∂z̄

) (
θ̂ − S̄

δ
φ̂

)
+ Rŵ

dθB

dz̄
− ∇2θ̂ = −εRû · ∇θ̂ , (2.10a)(

∂

∂t̄
− δ

∂

∂z̄

) (
(1 − δφ̄B)θ̂ − θBφ̂ − εθ̂ φ̂ +

C̄

δ
φ̂

)
+ Rŵ

dθB

dz̄
= −εRû · ∇θ̂ , (2.10b)

∇2[K(δφ̄B + εφ̂)û] − ∂

∂x̄
[û · ∇K(δφ̄B + εφ̂)] − R

∂2θ̂

∂x̄∂z̄
= 0, (2.10c)

∇2[K(δφ̄B + εφ̂)ŵ] − ∂

∂z̄
[û · ∇K(δφ̄B + εφ̂)] + R

∂2θ̂

∂x̄2
= 0, (2.10d )

with the boundary conditions

θ̂ = 0, ŵ = 0 on z̄ = 0, (2.11a,b)

θ̂ = 0, ŵ = 0, φ̂ = 0 on z̄ = 1. (2.11c–e)

An important feature of the dynamics of the mushy layer is the variation of the
permeability with the local solid fraction. Here, since the basic-state solid fraction
is small, of O(δ), and the perturbation to the solid fraction is also expected to be
small in the context of the weakly nonlinear theory to be developed, we expand the
function K(φ) in a regular series for φ � 1

K(φ) = 1 + K1φ + K2φ
2 + O(φ3), (2.12)

where K1 and K2 are constants specifying a particular form of the constitutive
relationship. Note that K1 must be positive in order to ensure the decreasing of the
permeability Π(φ) with increasing solid fraction φ. In what follows, we shall consider
a particular limiting case in which K1 is small by taking

K1 = δK̄1, with K̄1 = O(1) as δ → 0. (2.13)

3. The Takens–Bogdanov bifurcation
The analysis we shall pursue has the following three steps. The first step involves

the identification of the critical parameter values for which steady and oscillatory
convection in the mushy layer set in simultaneously (§ 3.1). The second step pertains
to the derivation of an amplitude equation describing the dynamics near this multiple
bifurcation (§ 3.2). Formal procedures for systematic derivation of such an equation
have been described in detail in the literature on competing instabilities (e.g. Knobloch
& Proctor 1981; Coullet & Spiegel 1983; Guckenheimer & Knobloch 1983). Here
we shall use a complex-extended version of the perturbation procedure devised by
Spiegel (1994). The third step then involves the analysis of the amplitude equation to
make specific predictions for the mushy-layer system in terms of transitions between,
and stability of, the steady and oscillatory convection patterns (§ 4).

3.1. Linear-stability problem: summary

To motivate our approach at the nonlinear stage, we commence by reviewing the
results of the linear-stability problem for (2.10) and (2.11). Linear-stability theory
(Anderson & Worster 1996) shows that, in the limit δ → 0, the onset of a neutral
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Figure 2. Neutral stability curves in the (k, R)-plane sketched for three cases: (a) C̄ = C̄ (c),
(b) C̄ < C̄ (c) and (c) C̄ > C̄ (c). The solid (dashed) curve corresponds to the steady (oscillatory)
instability branch. The system is linearly stable (unstable) below (above) each curve. The two
stability curves intersect at a Takens–Bogdanov point where the two modes bifurcate from
the basic state simultaneously at a single wavenumber and the frequency vanishes. In (a), this
point, labelled TB, coincides with the minimum of the steady branch at k = π. Note that the
minimum of the oscillatory branch is separated from TB by O(δ) in both k and R. At k = π,
fixed throughout the analysis, the bifurcation from the basic state of oscillatory mode precedes
that of steady mode in (b), while the oscillatory mode is absent in (c). The nonlinear modal
interactions near TB of (a) are described in § 3.

steady mode occurs at R = R(e) ≡ Ω−1/2
[
R00 + δR

(e)
01 + O(δ2)

]
, where

R00 =
π2 + k2

k
, (3.1a)

R
(e)
01 = R00

(
1

4
+

2

π2

)
S̄

ΩC̄ 2
(3.1b)

and k is the horizontal wavenumber of the perturbation. The steady stability curve
attains its minimum value at k = π. The onset of a neutral oscillatory mode with
a linear oscillation frequency ω = δω01 + O(δ2) occurs at R = R(o) ≡ Ω−1/2

[
R00 +

δR
(o)
01 + O(δ2)

]
, where

R
(o)
01 = R00

[
1

4
+

π2(1 + cosω01)

(π2 − ω2
01)

2

]
S̄

ΩC̄ 2
(3.2a)

and ω01 satisfies

0 = ω01

[
1 +

π2 + k2

π2 − ω2
01

(
1 − 2π2

π2 − ω2
01

sinω01

ω01

)
S̄

Ω2C̄ 2

]
. (3.2b)

An account of the parametric dependence of the oscillatory mode, determined from
(3.2a,b), is given by Anderson & Worster (1996). Their numerical results indicate that
the minimizing wavenumber for the oscillatory mode varies with the parameters S̄,
C̄ and δ, and is always greater than that for the steady mode (see also figure 5 of
Guba & Worster 2006).

The salient features of the linear-stability analysis are summarized in figures 2
and 3. Figure 2 shows the neutral stability curves for the steady and oscillatory
modes for representative values of C̄ at fixed S̄ and δ. The two stability curves
intersect at a codimension-two point of the Takens–Bogdanov type, where the two
modes bifurcate from the basic state simultaneously at a single wavenumber and the
oscillatory frequency vanishes. Focusing, for simplicity, on the wavenumber k = π, we
deduce, from (3.1b) and (3.2a,b), that this occurs at the critical values R = R(c) and
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Figure 3. (a) Linear-stability boundaries in the (C̄ , R)-plane sketched for k = π and fixed S̄
and δ. The solid (dashed) curve corresponds to the steady (oscillatory) mode of instability. The
system is stable (unstable) below (above) each curve. The curves meet at the point

(
C̄ (c), R(c)

)
.

The oscillatory mode exists when C̄ � C̄ (c), and is always less stable than the steady mode. (b)
Linear regime diagram in the (C̄ , S̄)-plane sketched for k = π. The steady mode is possible for
any parameter values, while the oscillatory mode exists within the region bounded by a curve
defined by C̄ = C̄ (c)(S̄). The asymptotic analysis of § 3 is valid in the shaded regions.

C̄ = C̄ (c) given by

Ω (c)1/2R(c) ≡ R
(c)
00 + δR

(c)
01 + O(δ2)

= 2π + δ

(
4

π
+

π

2

)
S̄

Ω
(c)
00 C̄ (c)2

00

+ O(δ2), (3.3a)

C̄ (c) ≡ C̄ (c)
00 + O(δ)

=
√

2S̄1/2 − S̄ + O(δ), (3.3b)

provided S̄ � 2, where Ω (c) = 1 + S̄/C̄ (c) and Ω
(c)
00 = 1 + S̄/C̄ (c)

00 . The O(δ) correction

term to C̄ (c)
00 in (3.3b) can be determined by proceeding to higher order (see § 3.2). At

this special Takens–Bogdanov point, the oscillatory mode terminates on the steady
mode at the minimum of the steady stability curve (figure 2a). Figure 3(a) illustrates
the Rayleigh numbers for the steady and oscillatory modes as functions of C̄ for
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k = π at fixed S̄ and δ, while figure 3(b) shows the path of Takens–Bogdanov points
in the (C̄ , S̄)-plane as given by (3.3b). The results of figures 2 and 3 suggest that the
compositional ratio C̄ can be used to adjust the onset of oscillatory instability. We
exploit this tuning behaviour in the subsequent nonlinear analysis.

3.2. Derivation of the amplitude equation

A branch of steady solutions bifurcates from R(e), while a branch of oscillatory
solutions bifurcates from R(o). The nonlinear solutions in the neighbourhood of
these simple bifurcations are now well understood (see Amberg & Homsy 1993
and Anderson & Worster 1995 for steady solutions; Guba & Worster 2006 for
oscillatory solutions). Here, we are interested in studying the nonlinear solutions in
the neighbourhood of the multiple bifurcation defined by (3.3). Hence, we write

Ω1/2R = R
(c)
00 + δR

(c)
01 + · · · + ε(R10 + δR11 + · · · ) + ε2(R20 + δR21 + · · · ) + · · · , (3.4a)

C̄ = C̄ (c)
00 + δC̄ (c)

01 + · · · + ε(C̄ 10 + δC̄ 11 + · · · ) + ε2(C̄ 20 + δC̄ 21 + · · · ) + · · · .

(3.4b)

Note that it would be equivalent, but mathematically less convenient, to expand S̄

instead of C̄ . Similarly, we expand the perturbation quantities in the forms

θ̂ = (θ00 + δθ01 + · · · ) + ε(θ10 + δθ11 + · · · ) + ε2(θ20 + δθ21 + · · · )
+ ε3(θ30 + δθ31 + · · · ) + · · · , (3.5a)

Ωφ̂ = (φ00 + δφ01 + · · · ) + ε(φ10 + δφ11 + · · · ) + ε2(δ−1φ2(−1) + φ20 + δφ21 + · · · )
+ ε3(δ−1φ3(−1) + φ30 + δφ31 + · · · ) + · · · , (3.5b)

Ω1/2û = (u00 + δu01 + · · · ) + ε(u10 + δu11 + · · · ) + ε2(u20 + δu21 + · · · )+
+ ε3(u30 + δu31 + · · · ) + · · · . (3.5c)

Here, we assume that 0 � ε � δ � 1. Note the appearance of singular terms in the
expansion for φ̂ at O(ε2) and O(ε3) as δ → 0. However, since we consider the double
limit where δ = O(1) as ε → 0, the asymptotic representation (3.5b) is, in fact, well
defined. These terms are discussed further below.

As ε → 0 with δ kept fixed, R is close to both R(e) and R(o), and the oscillation
frequency ω is small. Specifically, from (3.2b) we find

ω ∼ εδ

[
− 6π2

π2 − 9

1

Ω
(c)
00

C̄ 20

C̄ (c)
00

]1/2

, (3.6)

provided C̄ 20 < 0 (and in anticipation of vanishing O(ε) terms in (3.4b) for two-
dimensional convection; see below). There are two distinct time scales in the problem:
an O(εδ) oscillatory time scale suggested by linear theory, and a slow O(ε2) time scale
on which thermal dissipation and forcing act. Thus, we define

t̃ = εδt̄ and t̂ = ε2 t̄ , (3.7a,b)

so that ∂/∂t̄ 
→ εδ∂/∂t̃ + ε2∂/∂t̂ .
Substituting (3.4) and (3.5) into a rescaled version of (2.10) and (2.11), we obtain

a system that can be solved sequentially. At O(ε0δ0), we recover the leading-order
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linear stability problem at the codimension-two point. The solutions take the form

θ00 = − sin(πz̄)η00(x̄, t̃ , t̂) + c.c., (3.8a)

φ00 = − 2π

C̄ (c)
00

[1 + cos(πz̄)]η00(x̄, t̃ , t̂) + c.c., (3.8b)

u00 = cos(πz̄)
∂η00(x̄, t̃ , t̂)

∂x̄
+ c.c., (3.8c)

w00 = π sin(πz̄)η00(x̄, t̃ , t̂) + c.c., (3.8d )

R00 = R
(c)
00 , (3.8e)

where the one-dimensional planform function that describes rolls is

η00(x̄, t̃ , t̂) = A00(t̃ , t̂)e
iπx̄ . (3.9)

Here A00(t̃ , t̂) is a complex amplitude which is as yet arbitrary.
At O(ε0δ1), we obtain the first correction terms to the linear-stability problem at

the codimension-two point. The solvability condition at this order is automatically
satisfied because of the definition of R

(c)
01 and C̄ (c)

00 . The solutions take rather
complicated forms and hence are not recorded here. We only note that these involve
a similar planform

η01(x̄, t̃ , t̂) = A01(t̃ , t̂)e
iπx̄ , (3.10)

where A01(t̃ , t̂) is as yet arbitrary, giving rise to the amplitude function of interest
defined as A0 = A00 + δA01.

At O(ε1δ0) and O(ε1δ1), the existence of solutions requires

R10 = 0 and R11 = 0, C̄ 10 = 0, (3.11a–c)

respectively, as expected for the roll convection pattern. Again, to save space, the
explicit form for the solutions at these orders is omitted, except to note that these
involve two further planforms

η10(x̄, t̃ , t̂) = A10(t̃ , t̂)e
iπx̄ , η11(x̄, t̃ , t̂) = A11(t̃ , t̂)e

iπx̄ , (3.12a,b)

giving rise to the amplitude function A1 = A10 + δA11.
At the next order, O(ε2δ−1), from the solute balance (2.10b) we have

−C̄ (c)
00

∂φ2(−1)

∂z̄
= −C̄ (c)

00

∂φ00

∂t̂
. (3.13)

It may be noted that the solid-fraction perturbation φ2(−1) appears here as a dynamic
variable, instead of being slaved to the leading-order solid fraction field. This is a
consequence of the slow time scale t̂ associated with the perturbation growth rate, as
noted also by Anderson & Worster (1995).

Next, we discuss the O(ε2) problem, correct to O(δ1). The solvability conditions
found at O(ε2δ0) and O(ε2δ1) can be combined to yield the evolution equation

aA0t̃ t̃ − (b + c|A0|2)A0 = 0 (3.14)

for the amplitude A0, where the coefficients a, b and c are given below. We note
that the A00t̂ term in the O(ε2δ1) solvability condition has been made to vanish,
determining C̄ (c)

01 as given by (A 3). In passing, we remark that (3.14) is a nonlinear
conservative equation, with periodic solutions that are unstable. To recover the
‘dissipation’ associated with the physical effects inherent to the mushy layer, we need
to proceed to higher order in ε. We shall discuss these effects further in § 4.
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As at O(ε2), we find that the O(ε3) problem is forced by an O(1/δ) term. Specifically,
at O(ε3δ−1), (2.10b) becomes

−C̄ (c)
00

∂φ3(−1)

∂z̄
= −C̄ (c)

00

∂φ10

∂t̂
− C̄ (c)

00

∂φ2(−1)

∂t̃
. (3.15)

Note that the variations over the two time scales t̃ and t̂ come in to provide forcing
for the solid-fraction perturbation φ3(−1). In fact, this is the reason for the appearance
of O(1/δ) term in (3.5b).

Applying the solvability condition at O(ε3δ0) and O(ε3δ1) we obtain, after some
manipulation and use of (3.14), the evolution equation

aA1t̃ t̃ − bA1 − cA 2
0 A ∗

1 − 2c|A0|2A1 − dA0t̃ − eA 2
0 A ∗

0t̃ − (e + f )|A0|2A0t̃ + 2āA0t̃ t̂ = 0
(3.16)

for the amplitude A1, where the coefficients ā, d , e and f are given below. We note
that the term A2

00A
∗
00 in the O(ε3δ1) solvability condition has been made to vanish by

taking C̄ 11 = 0.
Finally, we can reconstitute (3.14) and (3.16) to obtain a single evolution equation

aÄ −
(
b + c|A |2

)
A − ε

[
dȦ + e

(
A ∗Ȧ + A Ȧ ∗)A + f |A |2Ȧ

]
= 0, (3.17)

where

a ≡ δā = δ

(
1 − 8

π2

)
Ω

(c)
00 + δ2ā1, (3.18a)

b = 2πR20 + δb1, (3.18b)

c = −2π4

(
1 + 11

K2

Ω
(c)2
00 C̄ (c)2

00

)
+ δc1, (3.18c)

d =
2π(π2 − 9)

3(π2 − 8)
R20 + δd1, (3.18d )

e = −2π4(π2 − 9)

3(π2 − 8)

(
1 − π2 + 3

π2 − 9

K2

Ω
(c)2
00 C̄ (c)2

00

)
+ δe1, (3.18e)

f = −2π4(π2 − 9)

3(π2 − 8)

(
1 +

33π4 − 169π2 − 1024

3π2(π2 − 9)

K2

Ω
(c)2
00 C̄ (c)2

00

)
+ δf1. (3.18f )

This equation determines the dynamics of the total amplitude A defined as A =
A0+εA1. Here the dot represents a new, resummed derivative d/dτ = ∂/∂t̃+(ε/δ)∂/∂t̂ ,
and the asterisk denotes complex conjugation. Expressions for ā1, b1, c1, d1, e1

and f1 are given in the Appendix. Such an equation arises in a number of other
physical systems with competing instabilities, including double-diffusive convection
(Knobloch 1986), rotating Boussinesq convection (Knobloch & Silber 1990) and
magnetoconvection (Dangelmayr & Knobloch 1986; Rucklidge et al. 1993), and its
dynamics are well understood (Dangelmayr & Knobloch 1987). The form of this
equation can be established on the basis of symmetry and group-theoretic arguments,
while the coefficients appearing in this equation are specific to the underlying physical
system. We point out here that b and d are linearly related to R20, R21 and C̄ 20, while
a, c, e and f are particular functions of the system control parameters S̄, K̄1, K2

and K3.
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4. Analysis of the amplitude equation
We outline the main features of the dynamics of (3.17) in § 4.1, and exemplify the

predictions for the mushy-layer system in terms of bifurcation diagrams in § 4.2 and
stability maps in § 4.3.

4.1. Steady and oscillatory solutions

The amplitude equation (3.17) admits steady-state solutions (A real, constant), as
well as oscillatory solutions in the form of travelling waves (A = |A |eiφA with
|A | constant, φ̇A constant), standing waves (A real, periodic) and modulated waves

(A = Ā eiφA with Ā periodic, φ̇A constant). The steady states are given by

A 2 = −b/c (4.1)

and arise as a primary pitchfork bifurcation from the basic state at b = 0. From
(3.18b) and (A 1b) this occurs at

Ω1/2R(e) = R
(c)
00 + δR

(c)
01 + ε2δ

[
−

(
2

π
+

π

4

)(
1 + Ω

(c)
00

) C̄ 20

C̄ (c)
00

]
, (4.2)

correct to O(δ) and O(ε2), where C̄ 20 can take either sign; see figure 2(b,c). Note that
the same result can be found from (3.1) in the present limit. Since the coefficient c is
always negative, the steady solutions exist for b > 0, or equivalently R > R(e), and are
thus always supercritical. This is a consequence of the requirement that K1 = O(δ) as
δ → 0, as noted also by Anderson & Worster (1995).

The travelling waves are given by

|A |2 = −d/f, φ̇2
A = (−b + cd/f )/a (4.3a,b)

and arise as a primary Hopf bifurcation from the basic state at d = 0, provided b < 0.
From (3.18d ) and (A 1c) this occurs at

Ω1/2R(o) = R
(c)
00 + δR

(c)
01 + ε2δ

{
−

(
2

π
+

π

4

)[
1 − 12(π2 − 8)

(π2 + 8)(π2 − 9)
+ Ω

(c)
00

]
C̄ 20

C̄ (c)
00

}
, (4.4)

provided C̄ 20 < 0 (so that C̄ < C̄ (c)); see figure 2(b). Again, the same result follows
also from (3.1a) and (3.2) in the present limit. We observe that the coefficient f is
always negative so that the travelling waves exist for d > 0, or equivalently R > R(o),
and are thus always supercritical, in agreement with results of Guba & Worster
(2006).

The standing waves are characterized by an oscillation in the (real) amplitude.
These solutions can be expressed in terms of Jacobian elliptic functions and analysed
by the method of averaging (Dangelmayr & Knobloch 1987), a procedure used to
study weakly dissipative nonlinear oscillators. In the present problem, they appear in
two types. For b(m − 1

2
) � 0

A = p cn(qτ |m), where p2 = − 2m

2m − 1

b

c
, q2 =

1

2m − 1

b

a
, (4.5a–c)

and the parameter m, 0 � m < 1, satisfies

5cd

2gb
=

2(1 − m + m2)Φ(m) − (1 − m)(2 − m)

(2m − 1)[1 − m + (2m − 1)Φ(m)]
, Φ(m) ≡ E(m)

K(m)
. (4.6a,b)

Here g = 2e + f , and K(m) and E(m) are the complete elliptic integrals of the first
and second kind, respectively. This solution represents a zero-mean oscillation about
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τ
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Figure 4. The functions cn(τ |m) (solid) and dn(τ |m) (dashed) valued for m = 0.99, illustrating
the different possible dynamics of the nonlinear oscillatory solutions to (3.17). Note that the
dnoidal oscillation has half the period of the cnoidal oscillation. As m → 0, cn(τ |m) → cos τ
and dn(τ |m) → 1, but as m increases the profiles acquire a characteristically spiky form as
shown, resembling relaxation oscillations. As m → 1, both profiles tend to sech τ , with the
periods becoming infinite.

the basic state (figure 4), with the period 4K(m)(2m − 1)1/2(a/b)1/2. Equations (4.5)
and (4.6) provide a parametric representation for the amplitude as a function of
the Rayleigh number R. Note that for m → 0 the solution becomes sinusoidal and
R ∼ R(o). Thus, these standing waves bifurcate simultaneously with the travelling
waves at the primary Hopf bifurcation. The bifurcation is supercritical for g < 0 and
subcritical otherwise (cf. Guba & Worster 2006).

For b > 0

A = p dn(qτ |m), with p2 = − 2

2 − m

b

c
, q2 =

1

2 − m

b

a
, (4.7a–c)

where m satisfies

5cd

2gb
=

(1 − m)(2 − m) − 2(1 − m + m2)Φ(m)

(2 − m)[2(1 − m) − (2 − m)Φ(m)]
. (4.8)

This solution represents a non-zero-mean oscillation in amplitude about the steady
state (4.1) (figure 4), with period 2K(m)(2 − m)1/2(a/b)1/2. It arises as a secondary
Hopf bifurcation from the steady-state solution branch; see § 4.2.

A further periodic solution, representing modulated waves, corresponds to travelling
waves that are modulated as they drift. This solution arises as a secondary bifurcation
from the branch of zero-mean standing waves. Further details can be found in
Dangelmayr & Knobloch (1987, § 6). In the parameter regimes considered below,
however, the modulated waves are in fact unstable.

4.2. Bifurcation diagrams

Recall that the quantities c and f are always negative, while g can take either sign.
Together with the existence and stability properties of solutions described in § 4.1,
this implies that the (S̄, K2)-plane divides into nine regions, as shown in figure 5, each
with different dynamics of (3.17). The predictions of the bifurcation analysis for these
parameter regions are now discussed in turn.
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Figure 5. Parameter regimes in the (S̄, K2)-plane. The lines, marked by the slope
K2/S̄, divide the plane into nine regions, labelled I–IX, each characterized by different
dynamics of (3.17). The O(δ)-corrections to boundaries between different regions have
been ignored. The bifurcation diagrams corresponding to regions I, III, VIII and IX are
shown in figure 6. Note that, for the oscillatory states, the diagram is appropriate for
1 − C̄ − (1 − 2C̄ )1/2 < S̄ < 1 − C̄ + (1 − 2C̄ )1/2 at fixed C̄ , as inferred from (3.3b).

We first note that the coefficients b and d of the linear terms in (3.17) are related
to the two independent bifurcation parameters, the Rayleigh number R and the
compositional ratio C̄ . Figure 6 shows bifurcation diagrams for solutions of (3.17),
describing the sequence of transitions as a distinguished bifurcation parameter, R, is
increased, while keeping C̄ fixed. The bifurcation structures depend on whether C̄ is
below or above its critical value C̄ (c). With nine parameter regimes of figure 5, this
makes for eighteen distinct cases in all. For illustration, we show in figure 6(a–c) the
case when C̄ < C̄ (c), while in figure 6(d ) the case when C̄ > C̄ (c).

The bifurcation diagram for region I of figure 5, given to leading order by

K2

S̄
<

6π2(π2 − 9)

39π4 − 151π2 − 1024
≈ 0.040, (4.9)

is displayed in figure 6(a). We observe that the primary Hopf bifurcation at R(o)

gives rise to stable travelling waves and unstable zero-mean standing waves, both
bifurcating supercritically. The travelling waves subsequently transfer stability to
steady states in a secondary pitchfork bifurcation at R = R(SS), where

Ω1/2R(SS) = R
(c)
00 + δR

(c)
01 + ε2δ

{
−

(
2

π
+

π

4

)

×
[
(π4 − 13π2 + 24)c − 3(π4 − 64)f

(π2 + 8)[(π2 − 9)c − 3(π2 − 8)f ]
+ Ω

(c)
00

]
C̄ 20

C̄ (c)
00

}
. (4.10)

The zero-mean standing-wave branch develops a turning point, followed by the
smooth transition at infinite period to a branch of non-zero-mean standing waves.
Note that both standing-wave branches are completely unstable. Also, note that
the stable oscillatory solution, the travelling waves, is the one with the larger Nusselt
number (proportional to |A |2), thus advecting more heat and solute across the system.
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Figure 6. Bifurcation diagrams. The sketches show the bifurcation sequences as R is increased
with fixed C̄ for (a) region I, (b) region III, (c) region VIII and (d ) region IX of figure 5.
For steady states |A | is shown, while for oscillatory states the root-mean-square value of |A |
is indicated. The labels SS, TW, SWc, SWd and MW denote steady states, travelling waves,
cnoidal standing waves, dnoidal standing waves and modulated waves, respectively. Solid
(dashed) curves represent stable (unstable) solution branches. Filled (open) circles represent
local (global) bifurcations. In (a–c) C̄ < C̄ (c), while in (d ) C̄ > C̄ (c). The basic-state solution
loses stability to steady states at R(e) and to oscillatory states at R(o). Note that no primary
Hopf bifurcation occurs in (d ). Also indicated are the Rayleigh numbers R(SS), R(TW), R(SWc),
R(SWd), R(SL) and R(SN) of the secondary bifurcation points at which the stability exchanges take
place. Note the regions of multiple stable states in (b) and (c). The path ABCDA, indicated in
(b), constitutes a hysteresis loop.

Region II of figure 5 is given to leading order by

0.040 <
K2

S̄
<

6π2(π2 − 9)

21π4 − 71π2 − 512
≈ 0.062. (4.11)

In this case, the bifurcation structure is similar to that for region I, except that
the initial instability is to stable standing waves rather than to travelling waves,
which subsequently transfer stability to travelling waves via an intermediate branch
of modulated waves.

Region III of figure 5 is given to leading order by

0.062 <
K2

S̄
<

6π2(π2 − 9)(3c̃1 − 1)

(1024 + 187π2 − 27π4)c̃1 − 1024 − 169π2 + 33π4
≈ 0.082, (4.12)

where c̃1 ≈ 0.70. As shown in figure 6(b), this case exhibits a range of Rayleigh
numbers where both the zero-mean standing waves and the travelling waves are
stable. Analysing the structure and stability of these solutions, we find that this
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bistability region extends from R(TW) to R(SWc), where

Ω1/2R(TW) = R
(c)
00 + δR

(c)
01 + ε2δ

{
−

(
2

π
+

π

4

)

×
[
(π4 − 13π2 + 24)(3g − 5f )c − 6(π4 − 64)(g − 2f )f

(π2 + 8)[(π2 − 9)(3g − 5f )c − 6(π2 − 8)(g − 2f )f ]
+ Ω

(c)
00

]
C̄ 20

C̄ (c)
00

}
, (4.13a)

Ω1/2R(SWc) = R
(c)
00 + δR

(c)
01 + ε2δ

{
−

(
2

π
+

π

4

)

×
[

(π4 − 13π2 + 24)(2m − 1)c − 6(π4 − 64)[Φ(m) + m − 1]f

(π2 + 8){(π2 − 9)(2m − 1)c − 6(π2 − 8)[Φ(m) + m − 1]f } + Ω
(c)
00

]
C̄ 20

C̄ (c)
00

}
(4.13b)

and m satisfies

f

g
=

2(1 − m + m2)Φ(m) − (1 − m)(2 − m)

5 [Φ(m) + m − 1] [1 − m + (2m − 1) Φ(m)]
. (4.14)

As R increases, a path AB along the stable portion of the standing-wave branch,
shown in figure 6(b), results in a jump down to stable travelling waves at point C. If
R is increased further, travelling-wave convection persists. However, if R is decreased
along CD then there is a jump up to standing waves. Thus, the path ABCDA
constitutes a hysteresis loop.

The parameter regimes for regions IV–VII of figure 5 are given to leading order by

0.082 <
K2

S̄
<

6π2(π2 − 9)(3c̃2 − 1)

(1024 + 187π2 − 27π4)c̃2 − 1024 − 169π2 + 33π4
≈ 0.090, (4.15a)

0.090 <
K2

S̄
<

30π2(π2 − 9)

51π4 − 115π2 − 1024
≈ 0.092, (4.15b)

0.092 <
K2

S̄
<

42π2(π2 − 9)

57π4 − 97π2 − 1024
≈ 0.101, (4.15c)

0.101 <
K2

S̄
<

2(π2 − 9)

π2 + 3
≈ 0.135, (4.15d )

respectively, where c̃2 ≈ 0.74. The associated bifurcation structures are found to differ
from that for region III in the relative positions of the secondary bifurcation points,
but not in the nature of the stable solution branches, and thus have been omitted
from figure 6.

In figure 6(c), we show the bifurcation diagram appropriate for region VIII of
figure 5, where

0.135 <
K2

S̄
<

18π2(π2 − 9)

1024 + 187π2 − 27π4
≈ 0.645, (4.16)

with corrections at O(δ). Again, as in figure 6(b), there is a region of bistability
accompanied by discontinuous transitions, but now involving jump transitions
between zero-mean standing waves and steady states. This bistability region extends
from R(SWd) to R(SWc), where R(SWd) is given by (4.10) with f replaced by g.

Finally, in figure 6(d ) we show the bifurcation structure for region IX of figure 5,
where

K2

S̄
> 0.645, (4.17)
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with corrections at O(δ). Note that we consider C̄ > C̄ (c) here, so there is no
primary Hopf bifurcation. The notable feature of this graph is a branch of stable
non-zero-mean standing waves, bifurcating off the steady branch in a secondary Hopf
bifurcation at R(SWd). Solutions on this branch correspond to vacillations about the
steady state without flow reversal, similar to the periodic behaviour seen by Peppin
et al. (2008). As R increases, these periodic solutions are superseded by the stable
zero-mean standing waves at R(SL), where

Ω1/2R(SL) = R
(c)
00 + δR

(c)
01 + ε2δ

{
−

(
2

π
+

π

4

)

×
[
5(π4 − 13π2 + 24)c − 12(π4 − 64)g

(π2 + 8)[5(π2 − 9)c − 12(π2 − 8)g]
+ Ω

(c)
00

]
C̄ 20

C̄ (c)
00

}
. (4.18)

This oscillatory branch continues up to R(SN), given by (4.13b) with f replaced by
g, where it loses stability in a saddle-node bifurcation. To investigate the eventual
stabilization of the zero-mean standing waves at higher amplitudes would require a
higher-order calculation, which is outside the scope of the present theory.

It is worth pointing out that the existence of all the bifurcation structures of
figure 6 is controlled only by the parameter combination K2/δS. Physically, this term
represents higher-order nonuniformity of the permeability due to the basic-state solid
fraction and its perturbations. Neither of these bifurcation scenarios would have been
identified had we assumed uniform permeability of the mushy layer, or had we chosen
S = O(1) rather than the distinguished limit S/C = O(1).

4.3. Stability maps: physical considerations

The foregoing analysis has highlighted the roles played by the secondary bifurcations
in determining the stable convection patterns at fixed compositional ratio C̄ . The
Rayleigh numbers corresponding to the secondary bifurcation points depend in a
complicated way on the control parameters of the system. We now examine the effect
of varying C̄ and, by doing so, identify the stable parameter regimes for convective
flows in mushy layers.

The nonlinear-stability results in the (C̄ , R)-plane are summarized in figure 7. Four
representative sets of parameter values have been chosen so that the predictions shown
in figure 7(a–d ) correspond respectively to regimes I, III, VIII and IX identified in
figure 5. The curves indicate the paths of the primary

(
R(e), R(o)

)
and secondary

(
R(SS),

R(TW), R(SWc), R(SWd), R(SL), R(SN)
)

bifurcation points, separating the plane into regions
with different stable convection patterns. In each plot, the paths not involved in the
stability exchanges have been omitted. In figure 7(a–c) varying R corresponds to a
slice through C̄ < C̄ (c) in figure 6(a–c); similarly, between figure 7(d ) and C̄ > C̄ (c)

in figure 6(d ). In figure 7(d ), the paths R(SL) and R(SN) (not indicated) nearly overlap
with the path R(SWd), and so the regions of stable zero-mean and non-zero-mean
standing waves are not discernible.

In an experiment involving a specific alloy, there are two degrees of freedom:
the pulling speed V and the initial composition C0. Note that increasing V is not
expected to affect the dimensionless mushy-layer thickness δ = d/(κ/V ), because the
dimensional depth of the layer will vary as d ∝ 1/V . Since the two control parameters
V and C0 are merged into R, and C0 is involved in both S̄ and C̄ , the results of
figure 7 cannot be easily applied to the physically relevant situation of C0 fixed as V

increases, or vice versa. This difficulty can be overcome by returning to dimensional
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Figure 7. Stability maps. The paths of the primary (R(e), R(o)) and secondary (R(SS), R(TW),
R(SWc), R(SWd), R(SL), R(SN)) bifurcation points in the (C̄ , R)-plane shown for representative
cases (a) K2 = 0.005, (b) K2 = 0.06, (c) K2 = 0.1 and (d ) K2 = 1, with S̄ = 0.5, K̄1 = 0.06,
K3 = 0 and δ = 0.2. The results in (a–d ) correspond to the parameter regimes I, III, VIII
and IX of figure 5, respectively. In each case, all the bifurcation paths meet at the point(
C̄ (c), R(c)

)
≈ (0.5, 4.8). The different regions are labelled by the stable pattern predicted

therein. The labels have the same significance as in figure 6. Note the regions of multiple stable
states in (b) and (c). In (d ), the paths R(SL) and R(SN) are not resolved on the scale of the
figure but lie just above the curve R(SWd) for C̄ > C̄ (c).

variables. As an illustrative example, we specialize our results so that they apply to a
particular binary alloy, the ammonium chloride–water system. Using relevant values
for material parameters (e.g. Emms & Fowler 1994, and references therein), we show
in figure 8 a regime diagram for this system, indicating the domains of stability in
terms of the pulling speed V and the initial composition C0. The other (dimensionless)
parameters have been chosen as K̄1 = 0.5, K2 = 0.08, K3 = 0 and δ = 0.02, so that
the results shown correspond to regime VIII in figure 5.

In an experiment in which C0 is fixed and V is increased from zero, figure 8
can be used to predict transitions. Note, in particular, that the regions of stable
steady states and zero-mean standing waves are separated by a region in which the
two types of states coexist. This bistability region is accompanied by a dynamical
hysteresis behaviour (cf. figure 6c). Specifically, as V increases, there is a snap-through
transition from the steady states to standing-wave convection, occurring along the
curve bounding the bistability region on its right. If V is then decreased, however, a
jump back to the steady states would occur at much lower values of V as determined
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Figure 8. Regime diagram. The diagram quantifies the operating conditions in the
(V,C0)-plane at which different stable convective flows are predicted. The labels have the same
significance as in figure 6. The material parameters used are appropriate for NH4Cl–H2O
systems. The other parameter values are adjusted so that the results shown correspond
to regime VIII in figure 5. The data are taken from experiments by Peppin et al. (2008),
indicating different solidification regimes observed: a mushy layer with steady-state chimney
convection, �; a mushy layer with oscillatory chimney convection (a ‘breathing mode’), ;
and a mushy layer with no chimneys, ∗.

by the curve bounding the bistability region on its left. Also indicated are the data
points taken from Peppin et al. (2008), with the square corresponding to the observed
steady-state chimney convection, the triangle corresponding to the oscillatory chimney
convection and the asterisk corresponding to a mushy layer with no chimneys. It
must be borne in mind that the present theory pertains to nonlinear convection in
mushy layers without the formation of chimneys, whereas the experimentally observed
convecting states feature fully developed chimneys. Nevertheless, the theory and
experiments are consistent in showing the transition from steadily convecting states
to non-convecting states through an intermediate regime of oscillatory convective
behaviour.

5. Conclusions
We have examined the nonlinear stability of convection in a mushy layer during

binary alloy solidification. Based on a model of the mushy layer given by Amberg &
Homsy (1993), our analysis extends the linear (Anderson & Worster 1996) and weakly
nonlinear (Anderson & Worster 1995; Guba & Worster 2006) stability analyses by
considering a regime in which steady convection interacts with oscillatory convection
at finite amplitude. In this regime, the Rayleigh number for the onset of oscillatory
convection differs from that for the onset of steady convection by only a small
amount, and the oscillation frequency is small. An appropriate scaling allows us
to carry out the nonlinear analysis analytically. A pivotal result of our analysis is
a complex amplitude equation (3.17), which describes the dynamics of the system
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near the simultaneous onset of steady and oscillatory convection. An analysis of this
equation reveals a number of interesting results concerning nonlinear convection in
mushy layers.

We have identified the three primary solution branches that bifurcate from the
basic state: steady states, travelling waves and zero-mean standing waves. In the
parameter regime considered, namely that in which K1/C̄ = O(δ), both primary
oscillatory branches bifurcate supercritically, and the stable solution is the one with
larger amplitude. We have analysed the stability of each solution and identified a
number of secondary bifurcations. The secondary bifurcations play an important role
in the stability exchanges that take place as the Rayleigh number varies at fixed
compositional ratio. A variety of possible bifurcation scenarios are summarized in
the bifurcation diagrams of § 4.2. We find that, at a given compositional ratio, the
prediction of a type of bifurcation structure hinges upon a single physical effect
associated with higher-order permeability variations owing to the basic-state solid
fraction and its perturbations. It is the nonlinear interaction between solid fraction
and temperature field that controls the bifurcation structure in the present mushy-
layer system.

We have also identified new stability limits associated with the modal stability
exchanges at the secondary bifurcation points. We have determined how these
nonlinear stability limits vary with the compositional ratio of the binary mixture.
Comprehensive stability maps have been obtained which show the alternative stable
convection patterns expected for particular operating conditions and illustrate most
clearly their non-unique nature. Our analytical predictions capture qualitatively some
of the features of mushy-layer convection observed experimentally by Peppin et al.
(2008).

We point out that the present analysis is valid for a single, externally imposed
wavenumber, k = π. Although this value does minimize the Rayleigh number for the
onset of the steady mode of instability, the preferred wavenumber for the oscillatory
mode is always greater in the available parameter space. Said another way, the steady
and oscillatory modes cannot be simultaneously critical at the same wavenumber.
Nevertheless, we expect the analysis to be particularly relevant to situations where
experimental control can be enforced on the size of convection cells.

We note that we have considered a particular parameter regime, namely that in
which K1/C̄ = O(δ), so that the bifurcation to steady-state convection is always
supercritical. When K1/C̄ = O(1), the bifurcation to steady-state convection may
be subcritical (Amberg & Homsy 1993). Together with the sub- or supercritically
bifurcating oscillatory branches (Guba & Worster 2006), this may have important
ramifications in terms of branching behaviour and nonlinear stability.

The present study is based on a mushy-layer model that, employing a rigid-lid
approximation, eliminates any interaction between the mushy and liquid regions
(Amberg & Homsy 1993). Recently, some efforts have been made to relax the
impermeability (Chung & Chen 2000), and both the impermeability and rigidity
(Roper et al. 2008) of the mush–liquid interface. While certainly more realistic,
these generalizations showed, in particular, that the important qualitative results,
such as the topology of neutral stability curves and parametric trends in terms of
nonlinear stability criteria, were preserved, though at slightly modified parameter
values. We expect the qualitative essence of a mode interaction between steady and
oscillatory convection, elucidated in the present paper, to be robust to similar model
generalizations.
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The numerous bifurcation features already apparent in the linear theory may lead
to an even richer variety of structures when nonlinear regimes are considered. For
example, the critical wavenumber separation noted above is particularly interesting,
as it points to another codimension-two bifurcation problem with similarly varied
dynamics. Recent studies of pattern-forming systems with competing instabilities
(Porter & Knobloch 2001; Dawes & Proctor 2008) lend support to this view. In
the present system, the ensuing finite-amplitude motion would be a larger scale
steady convective flow with a smaller scale oscillatory wave riding on it. A detailed
investigation of this possibility remains an open issue.
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Appendix. Coefficients in the amplitude equation
The coefficients ā1, b1 and d1 of the linear terms in (3.17) have the forms
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The coefficients c1, e1 and f1 of the cubic terms in (3.17) have the forms
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The expression for C̄ (c)
01 , appearing in the O(δ1) correction term to the critical

compositional ratio in (3.3b), has the form
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It is worth pointing out that the same expression can be obtained by setting the
coefficient a1 in (A 1a) of Anderson & Worster (1995), approximated correct to
O(ε0δ1) in the present limit, to zero, providing a further check of our results.
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